This group brings together the best thinkers on energy and climate. Join us for smart, insightful posts and conversations about where the energy industry is and where it is going.

Post

Ontario Power Boosts Prospects for Three SMRs

  • Ontario Power Boosts Prospects for Three SMRs
  • Bruce Power & Westinghouse Team Up for SMRs
  • Cernavoda / US And Romania To Sign $8B Agreements For New Reactors
  • CANDU Owners Group, Nuclear Energy Agency to collaborate on PHWRs
  • UK / UK Considers Equity Stake In New Reactors
  • UK / Prime Minister Is Backing Plans For Fleet Of SMRs
  • Floating Nuclear Plants / South Korea Companies Sign MoU On Development

Ontario Power Boosts Prospects for Three SMRs

nuclear iconOntario Power Generation (OPG) announced this week it is advancing engineering and design work with three grid-scale Small Modular Reactor (SMR) developers: GE Hitachi, Terrestrial Energy and X-energy. The announcement is the result of several ongoing processes with the developers, other Canadian nuclear utilities, and with several Canadian provinces.

The action by OPG accelerates the development of SMRs in Canada and places significant bets on the commercial prospects for three distinct types of advanced nuclear reactor technologies.

For a detailed analysis of this development, including a brief overview of the technical scope of  contributions by the three reactor developers, see the report by Power Engineering reporter Sonal Patel.

Ken Hartwick, OPG President and CEO, said in a press statement “OPG is leveraging more than 50 years of nuclear experience to support the development of carbon-free nuclear technology.”

“Our work with these three developers, along with our Global First Power partnership with Ultra-Safe Nuclear Corporation and its SMR project to support remote energy needs, demonstrates OPG’s unique position to become a world leader in SMRs,”

“SMRs will play a key role in helping to reinvigorate Ontario’s economy and further support the province and Canada as they work toward meeting their climate change targets of zero-emission electricity.”

On December 1, 2019, the Provinces of Ontario, New Brunswick and Saskatchewan signed a Memorandum of Understanding (MOU) that puts into place a framework for action on the deployment of SMRs in their respective jurisdictions. In August 2020, Alberta also signaled their intention to enter into the MOU.

canadareactormap

Map of Canada’s nuclear power plants and uranium mines

OPG recently concluded a due diligence process, in collaboration with other major energy utilities, to advance the development of an SMR in Ontario that would pave the way for the potential deployment of SMRs in other jurisdictions.

The deployment of Small Modular Reactors in Ontario would do the following;

  • capitalize on the existing nuclear supply chain within the province
  • enable other provinces to transition away from coal;
  • provide alternative energy options to benefit energy intensive industries;
  • drive national job creation and innovation;
  • facilitate deep, economically sustainable reductions in greenhouse gas emissions;
  • accelerate the transition from fossil fuels to a zero emissions electrical grid in Canada.

Quick Facts

Nuclear power is the backbone of Ontario’s electricity system and provides affordable and reliable energy 24/7 – avoiding 45 million tonnes of CO2 emissions each year.

The Canadian nuclear industry is growing in size and now accounts for 76,000 jobs across Canada (an increase from 60,000 jobs in 2012), with most of those jobs concentrated in Ontario.

SMRs, like traditional nuclear reactors, are designed to provide safe, reliable, carbon-free electricity, and offer lower capital cost and faster deployment than current reactors.

By generating up to 300MW of electrical power, SMRs are expected to be a reliable alternate energy source to replace diesel in rural communities and mines and to eliminate the need for coal plants.

Bruce Power & Westinghouse Team Up for SMRs

nuclear batteryBruce Power and Westinghouse Electric Company announced this week an agreement to pursue applications of Westinghouse’s eVinci micro reactor program within Canada.

The eVinci micro reactor is a next-generation, small nuclear battery for decentralized generation markets and micro grids such as remote communities, remote industrial mines. and critical infrastructure.

It is designed to provide competitive and resilient power and superior reliability with minimal maintenance and its small size allows for standard transportation methods and rapid, on-site deployment. The reactor core is designed to run for three or more years, eliminating the need for frequent refueling.

The key benefits of the eVinci Micro Reactor are attributed to its technical profile which include a solid core and advanced heat pipes. The heat pipes enable passive core heat extraction, allowing autonomous operation and inherent load following capabilities. These advanced technologies together make the eVinci Micro Reactor, in effect, a “solid-state” reactor with minimal moving parts.

Over the next year, the work between the two companies will focus on assessing the economic, social and environmental contribution of the eVinci technology compared to alternates such as diesel or other fossil fuels; identifying potential industrial applications.

“Bruce Power and Westinghouse Canada have a strong existing relationship and as Canada seeks new innovative options to build on its existing clean, CO2-free nuclear advantage, this is an exciting opportunity to advance further towards a Net Zero Canada by 2050,” said Mike Rencheck, President and CEO of Bruce Power.

“Bruce Power will leverage our relationships and capacity within the Nuclear Innovation Institute (NII) and Laurentian University-based Mining Innovation, Rehabilitation and Applied Research Corporation (MIRARCO) towards this exciting opportunity for Canada.”

“Small modular and micro reactors represent an incredible opportunity to bring GHG-emission free, affordable energy to the farthest regions of our province, supporting resource and economic development across our country,” said Greg Rickford, Minister of Energy, Northern Development and Mines.

“Our eVinci technology can provide clean, reliable energy to remote areas and industrial applications across Canada,” said Patrick Fragman, President and Chief Executive Officer, Westinghouse Electric Company.

This agreement is the latest partnership between Bruce Power, Westinghouse and key Canadian stakeholders to work towards Canada’s Net Zero by 2050 goal. This follows a Westinghouse presentation on the eVinci program at a conference hosted by the Organization of Canadian Nuclear Industries (OCNI) last month and attended by 200 people from leading Canadian suppliers.

Cernavoda / US And Romania To Sign $8B Agreements For New Reactors

trasury check(NucNet) Romania has signed a cooperation and financing agreements with the US on Friday for the refurbishment of one nuclear power reactor and the completion of construction of two more at the Cernavoda nuclear power station, US ambassador to Romania Adrian Zuckerman said this week.

Romania will invest €8-9B to complete the two new plants, Units #3 & #4, which are CANDU type PHWRs. The projects are planned, based on the new financing, to be completed by 2030.

US is in, China is Out

The agreement culminates a series of events that took place over the past six years in which the U.S. has successfully blocked efforts by Chinese State Owned nuclear enterprises to win the business from Romania.

Press reports in Romania said CGN had been criticized by Romania’s “strategic partners” over security issues tied to the use of Chinese technology. Reports also said there had been cost concerns related to the Cernavoda project.

Cooperation between Nuclearelectrica and CGN hit the rocks after Romania’s president Klaus Iohannis and US president Donald Trump signed a joint declaration in Washington last year that called for closer cooperation between US and Romania in nuclear energy.

Romanian Energy Minister Comes to DC to Pick Up an $8B check

In a statement posted on the US Embassy in Romania’s website, Mr Zuckerman said Romania’s energy minister Virgil-Daniel Popescu met with US energy secretary Dan Brouillette in Washington to initial an intergovernmental cooperation agreement for the refurbishment of one nuclear reactor and the building of two new reactors at Cernavoda.

“Nuclear energy is crucial to ensuring Romania has a reliable, affordable, and emissions-free supply of electricity, and the U.S. nuclear industry looks forward to providing their expertise to advance this important energy source,” said DOE Secretary Brouillette.

That same day Mr Popescu met with the president and chair of the US Exim Bank, Kimberley Reed, to execute a memorandum of understanding (MOU) for the financing of the Cernavoda nuclear project and other projects in Romania.

The financing package is the largest financing package ever received by Romania  from the US.

Cernavoda has two commercially operational CANDU 6 pressurized heavy water reactors supplied by Atomic Energy of Canada Ltd and built under the supervision of a Canadian-Italian consortium of AECL and Ansaldo.

Unit 1 began commercial operation in 1996. Unit 2 was subsequently completed and began commercial operation in 2007. Efforts to resume work on Cernavodă-3 and -4 began in 2003.

The Cernavoda -3 and -4 project consists of completing and commissioning two CANDU 6 type units with a minimum installed capacity of 720 MW each. According to Nuclearelectrica existing structures for the two units include the reactor building, the turbine-generator building and hydrotechnical circuit structures. These are in various stages of completion and will be used for any future construction.

US construction and engineering firm AECOM will be the EPC and lead the $8 billion project to complete two reactors at Romania’s nuclear power plant on the river Danube and refurbish one of its existing units, Romania’s Economy Ministry said in a statement after the US agreement was signed.

CANDU Owners Group, Nuclear Energy Agency to collaborate on PHWRs

(WNN) The OECD Nuclear Energy Agency (NEA) and the CANDU Owners Group (COG) have signed a Memorandum of Understanding (MOU) to cooperate in research and activities related to pressurized heavy water reactors (PHWRs). The purpose of the MOU is to advance the scientific and technical knowledge base for PHWRs and foster cooperation amongst research organizations that support PHWRs.

The MOU outlines the scope of a five-year agreement and provides a framework for collaboration between the NEA and COG. Under the new framework, the organizations will develop joint research activities and workshops, and exchange project on a range of technical subjects.

The PHWR has been developed since the 1950s in Canada as the CANDU, and from 1980s also in India. PHWRs generally use natural uranium oxide as fuel, and hence need a more efficient moderator, in this case heavy water. The PHWR produces more energy per kilogram of mined uranium than other designs, but also produces a much larger amount of used fuel per unit output.

candui-schematric

Newer PHWR designs, such as the Advanced CANDU reactor, have light water cooling and slightly-enriched fuel. CANDU reactors can accept a variety of fuels. They may be run on recycled uranium from reprocessing light-water reactor (LWR) used fuel, or a blend of this and depleted uranium left over from enrichment plants.

The Canadian-designed CANDU, are currently in operation in four of its member countries: Argentina, Canada, South Korea and Romania. NEA said it is reaching out to India and China to explore their interest in participating in the project. Both nations have operating CANDU plants.

“The NEA has done much to bring countries together to conduct research in areas particularly related to nuclear safety. We have not, however, done very much in the area of PHWRs as the vast majority of our members operate LWRs,” said NEA Director General William Magwood.

The Candu Owners Group is a private, not-for-profit corporation funded voluntarily by CANDU operating utilities worldwide, Canadian Nuclear Laboratories and supplier participants.

The NEA facilitates cooperation among countries with advanced nuclear technology infrastructures to seek excellence in nuclear safety, technology, science, related environmental and economic matters and law.

UK / UK Considers Equity Stake In New Reactors

(NucNet) The UK government is considering taking an equity stake in new nuclear power plants as part of the financing measures being put forward to advance the nations nuclear new build program

The announcement comes in the wake of the calamitous departure of Hitachi from the Wylfa and Oldbury nuclear projects which, if built, would represent 5,400 MW of CO2 emission free electrical generation capacity.

Hitachi quit because the UK government low-balled its offer for equity investment and rate guarantees for the projects. Also, it continued to dither over whether to implement the regulated asset base (RAB) method of financing the plants which is a “pay as you go” method of covering construction costs.

The nuclear industry has been calling for the introduction of the regulated asset base (RAB) proposal for the financing of nuclear power plants. The government has already said the model has the potential to reduce the cost of raising private finance.

The Times, London, reported that EDF wants a tax on UK household energy bills to help pay for Sizewell C, with other options including the British government taking a stake.

The UK Treasury is looking at having “a portion of equity from the government being invested” as a way of backing nuclear energy, energy minister Kwasi Kwarteng said during discussions at the ruling Conservative Party conference.

“It would be unrealistic to say that all the finance questions have been resolved,” he said.

“There is a broad strategic commitment and the way in which the finance is arrived at and categorized are questions for further debate.”

France’s EDF and China General Nuclear are 80% and 20% shareholders in the Sizewell C project. The cost of the project has been estimated at £18bn.

After Sizewell C, CGN is set to build a single HPR1000, or Hualong One, reactor design at Bradwell in Essex. This project has not been cancelled, but BBC News cited sources in the government, mostly from opponents of the project, saying this idea “‘looks dead”, given security concerns and deteriorating diplomatic relations between London and Beijing.

The project could be revived if the UK government and China find ways to settle their differences and fund both the Sizewell C project, with a 20% equity stake from CGN, and fund the Bradwell project, which could include up to thee Hualong One Units.

The HPR1000 is a China-designed 1,100-MW Generation III pressurized water reactor which incorporates elements of China’s ACP1000 and ACPR1000+ reactor designs.

On the other hand, the UK government could be pursuing a deliberate policy of causing foreign nuclear reactor vendors to exit the market to insure 100% of the supply chain is addressed by UK firms. This would be consistent with the UK’s BREXIT policy of separation of the UK from the European Union

UK / Prime Minister Is Backing Plans For Fleet Of SMRs

(NucNet) UK prime minister Boris Johnson is backing plans to spend £1.5B-2.4B of public money on a fleet of up to 16 small modular reactors, as part of a project being proposed by a nine-member industrial consortium, the Financial Times reported.

The money would be sufficient to pay for the first of a kind 440MW unit, a PWR, to be built by Rolls-Royce. A nine-member consortium led by engineering companies Rolls-Royce, Laing O’Rourke and Atkins wants to build the 16 SMRs by 2050.

The consortium, which also includes the National Nuclear Laboratory, will seek additional funding of at least £2bn, including from private investors and the capital markets. The government could also commission the first SMR, giving confidence to suppliers and investors.

Rolls-Royce has said the target cost for each new SMR is £1.8B by the time five have been built, with further savings possible.

The Rolls-Royce design is not complete and has not yet been submitted to the Office of Nuclear Regulation to enter the four year long Generic Design Review to assure that it is safe.

Floating Nuclear Plants / South Korea Companies Sign MoU On Development

(NucNet) South Korea’s Kepco Engineering & Construction Company and Daewoo Shipbuilding & Marine Engineering have signed a memorandum of understanding to cooperate on the development of floating nuclear power plants.

The two companies said they will develop technology for offshore nuclear power plants equipped with Bandi-60S reactors, a small modular reactor design that Kepco Engineering & Construction has been developing since 2016.

According to documents published by the Korean Nuclear Society, the Bandi-60S is a 60-MW block-type pressurized water reactor unit. The block-type design means the main components are directly connected, nozzle-to-nozzle, instead of using connecting pipes. This can eliminate the risk of a large-break loss-of-coolant accident.

The plant has a fuel cycle of 48-60 months and a design life of 60 years.

Floating nuclear plants are seen as a way of providing energy to remote regions. In May, the world’s only floating nuclear plant, Russia’s Akademik Lomonosov, began commercial operation. The plants are designed to provide power to remote Siberian oil and gas producing communities.

China has also  been developing floating SMRs to power artificial islands on the South China sea as part of its effort to project naval power in that region.

# # #

Dan Yurman's picture

Thank Dan for the Post!

Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.

Discussions

No discussions yet. Start a discussion below.

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »