Tri-Lab Initiative Leads Innovation in Novel Hybrid Energy Systems

Posted to Idaho National Laboratory in the The Energy Collective Group
image credit: Idaho National Laboratory
Nicole Stricker's picture
Science Communications Manager, Idaho National Laboratory

Nicole Stricker is the manager of Science Communications at Idaho National Laboratory. She works with scientists and engineers to explain their work to audiences outside their field of research....

  • Member since 2018
  • 24 items added with 16,862 views
  • Dec 9, 2020

Future novel hybrid energy systems could lead to paradigm shifts in clean energy production, according to a paper published last week in Joule.

Researchers from the U.S. Department of Energy’s (DOE’s) three applied energy laboratories — Idaho National Laboratory (INL), the National Renewable Energy Laboratory (NREL) and the National Energy Technology Laboratory (NETL) — co‑authored the paper describing such integrated energy systems.

Their effort outlines novel concepts to simultaneously leverage diverse energy generators — including renewable, nuclear, and fossil with carbon capture — to provide power, heat, mobility and other energy services. The historic collaboration between the nation’s Nuclear Energy, Renewable Energy and Fossil Energy labs aims to address a grand national challenge from an objective, holistic perspective.

“The design of integrated energy systems is a significant challenge — and opportunity,” INL Director Mark Peters, Ph.D., said. “The collaboration by the three applied national laboratories, and the setup and operation of real-world experiments at their testing facilities, represents a comprehensive and focused effort that is transparent and objective. This work will help realize future advanced energy systems that should help our nation expand affordable energy options and significantly contribute to wide-scale decarbonization efforts.”

The new article presents an objective new framework for engineering-based modeling and analysis to support complex optimization of energy generation, transmission, services, processes and products, and market interactions.

In short, it outlines a viable path forward for hybrid energy systems. Such systems are capable of leveraging multiple energy sources to maximize the value of each. They do this by creating higher-value products, delivering lower-emission energy to industry, and better coordinating demand with energy production.

“Working together, researchers at the nation’s applied energy laboratories have identified critical synergies among different power generation sources, which will be vital to transforming our energy economy. We look forward to advancing these creative solutions, collaboratively,” said Martin Keller, Ph.D., director of NREL.

The paper describes one example of the multi-input, multi-output nature of these systems: a hypothetical, tightly coupled industrial energy park that uses heat and electricity from highly flexible advanced nuclear reactors, small-scale fossil generators, and renewable energy technologies to produce electricity and hydrogen from electrolysis.

“In this scenario, depending on market pricing, electricity and or heat could be sold into the grid, used on-site or stored for later distribution and use,” said David C. Miller, Ph.D., NETL’s senior fellow for strategic systems analysis & engineering and co-author of the article. “Furthermore, the output streams could also be used to produce hydrogen or other valuable chemicals and products.”

This flexibility could provide an abundant supply of clean energy for a larger net-zero-emission energy system. Such systems could support sectors of the economy that are more difficult to decarbonize, such as industry and transportation.

“Considering complementary attributes among various energy technologies opens up new opportunities for asset use optimization that meet multiple energy services and maximize economic value,” said Douglas Arent, Ph.D., NREL’s executive director, strategic public-private partnerships and the study’s lead author.

Groundwork for the article began in 2018, when NETL, NREL and INL hosted the first tri-lab workshop in response to DOE Deputy Secretary Mark Menezes’ call for more coordinated work across the DOE applied energy labs. Building off knowledge gained during that collaboration, a focused workshop was held in April 2019 on the priority topic Modeling & Analysis of Current & Future Energy Systems. A third tri-lab workshop, held July 31-Aug. 1, 2019, focused on addressing the science and technology challenges associated with the design, development and deployment of new and advanced materials and components that will enable integrated hybrid energy systems.

“The National Energy Technology Laboratory is proud to partner with INL and NREL in this foundational work,” NETL Director Brian J. Anderson, Ph.D., said. “The complimentary expertise across the three labs are bringing revolutionary ideas to the table on how to design and optimize integrated energy systems of the future.”

As illustrated by the NETL-NREL-INL research to date, the design of hybrid energy systems will require input from experts across the spectrum of energy research. To this end, the body of work by the three applied national laboratories, including the tri-lab workshops and the recent Joule article, represent a significant step forward toward realizing the advanced energy systems of the future.

“The national laboratories offer a diversity of expertise that will allow us to achieve effective, cross-sector collaboration that is necessary to solve the true energy and environment grand challenges of our time,” said Shannon Bragg-Sitton, Ph.D., INL lead for integrated energy systems and co-author of the article.

INL is a U.S. Department of Energy (DOE) national laboratory that performs work in each of DOE’s strategic goal areas: energy, national security, science and environment. INL is the nation’s center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance.

See more INL news at Follow us on social media: Twitter, Facebook, Instagram and LinkedIn.

Idaho National Laboratory
Part of the U.S. Dept. of Energy’s complex of national laboratories, INL performs work in each of the strategic goal areas: energy, national security, science & environment. INL is the nation’s leading center for nuclear energy research & development.
Bob Meinetz's picture
Bob Meinetz on Dec 9, 2020

Nicole, as much as I understand politics to be an important part of putting any policy to work, creating a hybrid system of multiple energy inputs doesn't make a lot of practical sense.

What's the goal? If it's to create clean energy, why would fossil fuels be part of a solution? If it's to create electricity that can be generated as needed, why would renewables be part of a solution? Other than inclusion, what would justify making the process of generating useful energy more complicated, and less efficient, than it needs to be?

Anyone who enjoys cooking probably has created a dish that mixed her or his favorite ingredients together - and tasted awful. In both circumstances, restraint is key - let nuclear energy be the primary flavor; use renewables and fossils sparingly for nuance.

Nicole Stricker's picture
Nicole Stricker on Dec 10, 2020

Bob, thanks for your thoughtful questions and perspective. The goal of a hybrid system is to get the most out of all energy sources, making them all more efficient in the process. When nuclear and fossil energy plants discharge heat to the environment, that’s wasted thermal energy. When renewables and baseload sources are generating more than the grid needs, that’s wasted electricity. Integrating these systems offers numerous benefits such as, for example, making it possible for nuclear plants to sell a commodity (thermal energy, hydrogen) even when the grid is flush with electricity from renewables. So in a time when so many people agree that we'll need "all of the above" to meet demand while achieving carbon reduction goals, creative ideas like integrated systems are getting more attention. 

Bob Meinetz's picture
Bob Meinetz on Dec 12, 2020

Nicole, combining energy sources to make a uniform, reliable supply of electricity is seldom more energy-efficient than using a single source, given predictability is necessary to maximize efficient use of resources. The more input variables there are, the less predictable output is.

For example: in California, the heat rate of natural gas combustion provides a rough approximation of overall efficiency. As renewables have been introduced, heat rates for existing gas plants have gone down significantly - from 12-20%, depending on the age of the plant. Why? When a cloud comes hides the midday sun, a solar farm's about may decrease by 200MW in a matter of minutes. Natural gas in spinning reserve must ramp up quickly to avoid outages. Stopping and starting natural gas turbines wastes fuel - for the same reason city driving wastes gasoline, compared to highway driving.

“The national laboratories offer a diversity of expertise that will allow us to achieve effective, cross-sector collaboration that is necessary to solve the true energy and environment grand challenges of our time..."

Dr. Bragg-Sitton's statement is a political one, not one based in the physics of  energy. Though cross-sector collaboration may be necessary for appeasing members of Congress with various financial interests in the game, what's needed to solve climate change isn't nearly that complicated: zero-carbon, affordable energy that's available on a dispatchable basis, and in truth, there's only one source that qualifies.

Matt Chester's picture
Matt Chester on Dec 9, 2020

“The national laboratories offer a diversity of expertise that will allow us to achieve effective, cross-sector collaboration that is necessary to solve the true energy and environment grand challenges of our time,” said Shannon Bragg-Sitton, Ph.D., INL lead for integrated energy systems and co-author of the article.

This really is one of the important aspects of the DOE labs (called the crown jewels for a reason) and the work they're doing. Thanks for keeping us up to date on the progress, Nicole. 

Nicole Stricker's picture
Thank Nicole for the Post!
Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.
More posts from this member

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »