This group brings together the best thinkers on energy and climate. Join us for smart, insightful posts and conversations about where the energy industry is and where it is going.


High Renewable Energy Costs Damage the Vermont Economy

Willem Post's picture
President Willem Post Energy Consuling

Willem Post, BSME'63 New Jersey Institute of Technology, MSME'66 Rensselaer Polytechnic Institute, MBA'75, University of Connecticut. P.E. Connecticut. Consulting Engineer and Project Manager....

  • Member since 2018
  • 613 items added with 210,030 views
  • Jan 29, 2014


renewables and vermont economy

With regard to renewable energy, it DOES matter what Vermont does, especially if it is on the wrong track to the detriment of Vermont’s economy, which has been in an about 0.85% per year growth mode since about 2007, with declining real household incomes since about 2000, while state spending increased at a greater annual percentage.

As shown below, Vermont’s renewable energy programs, such as SPEED, are wasteful, because they produce energy at 3 – 4 times New England annual average grid prices, which is unsustainable, especially in a near-zero-growth economy. Scarce capital should be spent on increased energy efficiency, not wasteful renewable energy programs. It would be a much better way forward for Vermont, as it would reduce the energy bills of households and businesses.

Already-struggling households and businesses have been dealing with a near-zero-growth Vermont economy since 2007, with the tax-burdened, hollowed-out, private sector shrinking relative to the growing, bloated government sector, which is acting as a wet blanket on the private sector, a sure recipe for economic stagnation, lack of well-paid employment growth (except in government), or worse.

At some point, clear-headed thinking must prevail, budgets must be cut, taxes must be reduced, wasteful programs must be eliminated, or else Vermont’s hollowed-out, private, tax-paying economy will continue on its near-zero-growth path, less and less able to scrape up enough money to pay for the rapidly-increasing expenditures of the growing, money-guzzling government sector.

Trying to introduce poorer quality energy sources, such as variable, intermittent wind and solar energy, into the existing power system and at higher prices, flies in the face of evolution, thermodynamics and economics.


Vermont would have a much bigger bang for the buck, i.e., reduce more CO2 per invested dollar, if it practiced increased energy efficiency, starting with:

– A strict energy code for NEW, subsidized, net-zero-energy buildings, instead of expensively subsidized renewable energy projects; there is no money to do both at the same time. Imposing new carbon taxes, increased EV surcharges, etc., thereby further harming Vermont’s weak economy, is not and option.

– Increased surcharges on electricity guzzling households; the greater the consumption, the greater the surcharge percent; the surcharge to be collected each month. Such households would quickly find ways to reduce their electricity consumption.

– Increased surcharges on gasoline- and diesel-guzzling light duty vehicles, i.e., cars, minivans, SUVs, ¼-ton trucks; the greater the gas guzzling, the greater the surcharge percent; the surcharge to be collected at time of annual registration. Such vehicle owners would quickly find ways to reduce their gas and diesel consumption, such as by driving fewer miles.

The above measures would quickly reduce CO2 emissions and raise revenues to subsidize weatherizing the housing of lower-income households and net-zero-energy buildings.


Energy efficiency will go nowhere regarding buildings without a very strict, state-wide-enforced, building code. In Denmark, a recently passed law requires NEW residential buildings must be zero-energy. Vermont should follow THAT example.

Here is an example of what CAN be done, AND it would be invisible, AND, for many decades, it would maximize fossil fuel and CO2 reduction to near zero, AND it would REDUCE energy bills of already-struggling households and businesses to near zero, other than maintenance and replacements.

If one had a properly-oriented, free-standing house about as efficient as a Passivhaus, then energy requirements for heating, cooling, and electricity would be minimal, even in cold climates.


Energy efficiency for buildings did not become an issue until after the 4-fold increase of crude oil prices in 1973. The owners of buildings, seeing major increases in their heating and cooling costs, engaged consulting engineers to make energy surveys of buildings, which, after implementation of the recommendations, usually resulted in at least 50% decreases of energy consumption.

Such efficiency improvements regarding houses did not take place until much later, and then only on a case by case basis, because politicians were, and still are, very slow to upgrade building codes. For them it is so much easier to be for heavily subsidized, highly visible renewable energy, than for lightly subsidized, invisible energy efficiency.

Because CO2 emissions are one of the factors affecting global warming and climate change, it would be desirable to have buildings meet the goal of “net-zero-energy and near-zero CO2 emissions”. Below are two energy, CO2 emission, and cost reduction alternatives; one goes only part way towards the goal, the other goes much further.

The first alternative is having a standard, code-designed house to which is added a grid-connected PV solar system with sufficient capacity to charge a plug-in vehicle. This alternative would achieve CO2 emission reductions, but would be a long way off from the desirable goal of “net-zero-energy and near-zero CO2 emissions”.

The second alternative is having a very energy-efficient house to which is added a PV solar system with sufficient capacity to charge a plug-in vehicle, plus an electrical energy storage system and a thermal energy storage system. This alternative would achieve “net-zero-energy and near-zero CO2 emissions”.

This article describes the 3 alternatives in detail.


Efficiency Vermont Budgets: With increased electricity sales due to H-40 RESET, the budgets of Efficiency Vermont, which went from $14.0 million in 2003 to $52.2 million in 2015, about 3.729 times greater, for a growth rate of 11.6% per year over 12 years, will increase at an even faster rate!! The 2015 EV budget amounts to a 6% ADDER to what Vermont ratepayers paid for electricity in 2014. This is an unjustifiable, out-of-control situation that must not continue.

Efficiency Vermont spends about 45% of its budget on Salaries, Benefits, Payroll Taxes, etc., for its 180-person staff, plus General & Administration. The other 55% is used to subsidize energy efficiency projects. That is a very inefficient way to do energy efficiency. Some other way has to be found before the EV budget, apparently on autopilot, goes to the scheduled $85 million.

Whereas, EV year-end balance statements of the early years could be deciphered, this is not the case with the amalgamated Vermont Energy Investment Corporation year-end statements, unless a person is a very experienced CPA and has the statements explained to him by insiders.

Setting up EV and VEIC may have been attractive some years ago, but the actual results do not justify their continued existence. It would be best, if EV and VEIC were declared expensive, ineffective failures, and ALL the money (about $85 million/yr and increasing) used to subsidize weatherizing low-income housing and net-zero-energy buildings.

There would be no need to have a carbon tax, etc., and Vermont ratepayers would see about a 5% reduction in their electric bills due to the EV surcharge being ended!

Vermont builders were building net-zero-energy buildings before EV even existed. There is no need for EV to tell them how to do it.

In Denmark, ALL new housing must be net-zero-energy. Vermont should follow THAT example, instead of destroying ridgelines and coddling in-state and out-of-state multi-millionaires, with tax shelters, to build 2.2 MW solar plants in meadows, and have the PSB “compensate” them (fatten their tax shelters, at the expense of already-struggling households and businesses) at an outrageously high 25.7 c/kWh, whereas, according to David Hallquist, CEO of VEC, and the recent PSB auction, solar energy costs about 15.3 c/kW, or less, for 1,000 kW systems and up.

NOTE: Vermont’s government makes lots of high-sounding pronouncements regarding energy efficiency, but does not practice it!!

Vermont State Government buildings: average 107,000 Btu/sq ft/yr for heating, cooling and electricity. Energy efficient buildings would use about 25,000 Btu/sq ft/yr.

The Xerox Headquarters, Stamford, CT, placed in service in 1979, needs only 28,400 Btu/sq ft/yr for heating, cooling and electricity, without the benefits of PV solar panels, geothermal heating, or solar hot water heating. Nearby similar headquarters buidings needed at least 50,000 Btu/sq ft/yr.

SOLAR AND WIND ENERGY, percent of total consumption, capital cost

Solar: Total solar energy in 2013 was about 41.5* MW x 8,760 hr/yr x capacity factor 0.14 = 50,896 MWh.

Solar percent of Vermont consumption = 50,896/5,600,000/100) = 0.91%, mostly SPEED solar.

Capital cost, nominal dollars, was about 41.5 MW x 5.0 million/MW (3.5-yr average SYSTEM price) = $207.5 million over the past 3.5 years.

* Vermont had installed about 28, 41.5 and 79.5 MW at end 2012, 2013 and 2014, respectively.

Wind: Total wind energy in 2013 was about 219,467 MWh.

Wind percent of Vermont consumption = 219,467/5,600,000/100 = 3.89%

Capital cost, nominal dollars, was about 113 MW x $2,814,000/MW = $318 million over the past 3.5 years.


SPEED and non-SPEED Solar and Wind: By the end of 2013, Vermont had subsidized about $538 million of solar and wind investments (about $220 million for solar + about $318 million for wind), over the past 3.5 years, but had practically nothing to show for it; about 0.96% from solar and about 3.89% from wind, for a total of 4.86% of Vermont’s annual ELECTRICAL ENERGY consumption, or about 4.86/3 = 1.62% of ALL annual energy consumed by Vermont.   

NOTE: The below report shows about 2.15% of Vermont’s workforce is engaged in the heavily-subsidized RE sector and 2.15% is engaged in energy efficiency. If it took 2.15% of the Vermont workforce to produce such a small RE result, then a much larger percentage of Vermont’s workforce would need to be engaged in the heavily-subsidized RE sector to reach 90% of ALL energy from RE by 2050, per the 2011 Comprehensive Energy Plan.

That 1.62% is a long way off from the unrealistic, starry-eyed, 2011 CEP goal of 90% of ALL energy from RE by 2050, not just electrical energy which is only 1/3 of ALL energy. Vermont’s 90% RE goal by 2050 would require:

– About 90% of all cars, SUVs, minivans and 1/4-ton pick-ups to be all electric or hybrids using electricity and 100% bio-fuels. No more 90% gasoline/10% ethanol mix, or diesel, etc., at the pump. That implies the US will be producing about 10 million/yr of such vehicles by 2050.

– Major EE upgrades of almost all residential and other buildings to enable heating and cooling with electric heat pumps and bio-fuels, such as wood, wood pellets, etc. No more fuel oil, propane, gas, coal, etc., for building heating and cooling.

NOTE: There are other Vermont-generated RE sources, such as biomass, but they are expected to be minor.

NOTE: PV panel prices are about as low as they will go. Roof-mounted PV SYSTEM costs have leveled at about $4000/kW. Wind turbines on ridgelines are more or less a dead issue in Vermont for the next 10 years, per Rep. Klein. Wind turbine technology is mature and increased efficiency can be achieved mainly by going taller, not likely on Vermont ridgelines. Regarding new technologies? They will be slowly implemented and at great cost, as Germany (way ahead of Vermont) has already found out during its 13 years of ENERGIEWENDE.

NOTE: Here is a speech to a PV solar stakeholder convention in Germany by Sigmar Gabriel, Vice Chancellor, and Economics and Energy Minister, regarding the Germany’s Renewable Energy project, ENERGIEWENDE, verging on failure. His speech was likely approved by Chancellor Angela Merkel.

The audience was stunned to hear the unvarnished truth regarding RE.

“The truth is that in all fields we under-estimated the complexity [and cost] of the Energiewende.” [Just as in Vermont].

it such a challenge for Germany, it would be even a greater challenge for less capable/less rich countries/states, including Vermont.

“The complete exemption from paying feed-in tariffs is a model that is wonderful for you (PV stake holders and PV system owners) as a business model, but is one that is a problem for everyone else.”

Well-off households with PV systems, and in-state and out-of-state multi-millionaires with risk-free tax shelters owning SPEED PV solar projects receive subsidies, generous feed-in tariffs, and other benefits, whereas other households, 97+%, pay the costs; a gross societal inequity, including in Vermont.

NOTE: It is amazing the Department of Public Service does not keep track of these numbers and post them, along with other project data, in spreadsheet format, on its website. Even for the expert, it takes quite some effort to gather the information from various sources.


Energy Available From Hydro-Quebec:At present, Hydro-Quebec exports to New England, New York, Ontario and New Brunswick. H-Q has 30 TWh/yr of hydropower available for export, about half of which is contracted to supply utilities in New England. H-Q is building four new hydro plants, with a total capacity of 1,550 MW, which could produce about 1,550 MW x 8,760 x CF 0.67 = 9 TWh/y, enough electricity to serve 1.5 million New England homes with each home using about 6,000 kWh/yr.

Vermont utilities have contracts with Hydro-Quebec to buy about 1.2 TWh/y, or about 100 x 1.2/5.6 = 21.4% of Vermont’s 2010 consumption, costing about 5 – 7 c/kWh.

The energy is:

– Renewable

– Near-CO2-free

– Reliably available, unlike wind and solar, which are weather-dependent

– Steady, not variable, not intermittent, like wind and solar

– Low-cost; about 5 – 7 c/kWh, tied to annual average New England WHOLESALE prices which have averaged about 5 c/kWh for the past 5 years, due to an abundance of low-cost, nearby, DOMESTIC natural gas.

Clearly, H-Q hydro energy is a much better for Vermont’s economy than all other RE alternatives. Chaining poor Vermont to high-cost, in-state-generated RE would be extremely adverse for its weak economy, which has been in near-zero growth mode during 2011, 2012, 2013, and 2014, with tens of thousands of households and businesses just barely making it.

NOTE: Blackstone, a Venture Capital Firm, is planning to build a 154-mile HVDC transmission line that would run beneath Lake Champlain. The $1.2 billion, 1,000-MW line, known as the New England Clean Power Link, would carry hydroelectric and wind power generated in Canada to metropolitan energy markets in the Northeast. As part of the plan, Vermont utilities have the option to purchase 200 MW of power should they want it in the future. The 200 MW could mean an energy supply of up to 200 MW x 8760 h/y x CF 0.90 = 1577 GWh/yr, or about 21.6% of Vermont’s 7300 GWh energy consumption in 2050, as projected by the EAN report, January 2015 revision.

Energy Available From New Brunswick and Labrador: Getting a significant quantity of hydro energy from New Brunswick and Labrador would involve about $5 – $8 billion in new HVDC lines for all of New England, NO significant grid changes, NO significant generator mix changes, plus the wholesale cost of the energy likely would be 5 – 7 c/kWh under 20-year, market-based, contracts. A MAJOR LONG-TERM plus for the New England economy.

This article describes all in detail.


Vermont annual electrical consumption is estimated at about 5,554,500,000 kWh/yr. The SPEED program has a goal of 20%, or 1,110,900 MWh, of total statewide electric retail sales be generated from NEWLY-BUILT RE projects, including solar, wind, biomass, landfill gas, farm methane, and hydro plants, by end 2017.

The SPEED program has two categories of projects:

– 2.2 MW or less, Standard Offer: capped at 127.5 MW, feed-in tariffs set by the PSB.

– Greater than 2.2 MW; no cap, owners sell to utilities under PPAs at about 10 c/kWh, or 2 times NE grid prices.

SPEED Projects 2.2 MW or less, Standard Offer

The SPEED program, with help of subsidies from the Clean Energy Development Fund, produces expensive energy. Adding more money to the CEDF would worsen a bad situation. 

To facilitate chasing federal and state subsidies, the CEDF and SPEED program were created by RE promoters, some of whom decided to resign from the CEDF board, because of conflict of interest, as they owned RE businesses that built CEDF-subsidized and SPEED-subsidized projects.

Vermont has been replacing the near-CO2-free, low-cost (4 – 5c /kWh) energy of Vermont Yankee with expensive, variable, grid-disturbing SPEED energy. That energy is getting more and more expensive (see table). But Vermont wants to be an “RE leader”, just like Germany. However, Germany is very rich and Vermont is poor.

H-40 RESET is SPEED on Steroids: The PSB is still approving 2.2 MW solar plants in meadows, etc., owned by in-state and out-of-state multi-millionaires with lucrative, risk-free, tax shelters at 27.1 c/kWh for 100% of their production. This is about the highest “compensation” of all states.

Example: Springfield Solar Alliance 1 @ 27.1/kWh, approved in 2014/2015

Vermont is a leader subsidizing multi-millionaires and sending money OUT OF THE STATE!!!

Production Results: Here are the production results for the SPEED Program, 2.2 MW or less:

Year……….Production…………Paid to Owners……….$/kWh……..VT Annual Consumption






2014……….62,865,075……….13,190,927.86…………0.2098…………1.13; after 4.5 years and several hundred million dollars of investments in RE projects that produce expensive, mostly variable, intermittent energy!!

Excess payments, the amount above On-Peak wholesale prices charged to rate payers, were about $10 million in 2014; based on annual average New England On-Peak wholesale prices of about 6 – 7 c/kWh which have been steady during the past 5 years, and will likely remain near that level, because of abundant, nearby natural gas.

………………Excess Payments……….Cent/kWh; the amount added to electric bills.





2014……………$9,796,214………………0.18; that adder is rapidly increasing, as are the Efficiency Vermont surcharges.

If one uses 700 kWh/mo, then 700 x 0.18 = $1.26 is added to the electric bill, on top of the about $10 Efficiency Vermont surcharge.

The above “Paid to Owners” column shows the amount paid mostly to the risk-free tax shelters of in-state and out-of-state multi-millionaires, who own the larger PV solar systems. In the future, these “Paid-to-Owner” amounts will be INCREASING at least $4 – 5 million per year, as the table shows, courtesy of the PSB, et al. Those owners get compensated at an average of about 27 c/kWh for existing solar projects. This is Democrats coddling the seriously rich, at everyone else’s expense!

The “Excess Payments” were rolled into the electric rates of already-struggling households and businesses. These payments will increase to about $62.5 million by 2017, because the PV solar feed-in tariff, set by the PSB, is an excessively high 25.7 c/kWh (based on “avoided cost-based prices”), and because of VT’s unrealistic SPEED/RESET goals which very likely will not be achieved. See Notes.

The politically well-connected, multi-millionaires, with lucrative, no-risk, tax shelters, are benefitting the most from tax credits, fast write-offs, production tax credits and overly generous feed-in tariffs, to build solar plants (destroying meadows) and under-performing wind plants (destroying ridge lines) that produce variable, intermittent energy at 3-5 times New England grid prices; a sure way to further DECREASE the competitiveness of an already near-stagnant Vermont economy. Those wealthy multi-millionaires are coddled by Democrat-inspired RE programs, which excessively waste scarce taxpayer money and do nothing to reduce global warming.

Other feed-in tariffs are:

PV Solar………………………0.257 – 0.271


Landfill gas……………………0.090

Farm methane………………..0.141

Wind over 100 kW……………0.118

Wind 100 kW or less…………0.253


NOTE: Vermont’s SPEED goal: 20% of total statewide electric retail sales during year commencing January 1, 2017 must be generated by SPEED resources that constitute NEW renewable energy, or 0.20 x 5,554,500,000 kWh/yr (assumed VT consumption in 2017) = 1,110,900,000 kWh/yr, with:

– SPEED projects greater than 2.2 MW (no cap) producing 777,630,000 kWh/yr (assumed at 70%), and

– SPEED projects 2.2 MW or less (capped at 127.5 MW) producing 333,270,000 kWh/yr (assumed at 30%).

Note the RISING $/kWh trend, whereas RE promoters were claiming RE rates would decline. 

Such high RE energy costs will increase Vermont household electric rates, which already are the 4th highest in the US, right after Connecticut, Alaska, and Hawaii.

Solar SPEED is compensated at an outrageously high 25.7 c/kWh for ALL energy fed into the grid, and non-SPEED, mostly roof-mounted solar systems, is compensated at the electric rate  + 6 c/kWh, for all energy produced, in the GMP North service area. In the GMP South service area different, less generous, rules apply.

NOTE: The SPEED value of 25.7 c/kWh is at least 10.2 c/kWh too high. According to David Hallquist, CEO of VEC, it should be 15.3 c/kWh for systems 1,000 kW and up. That value is of great benefit for the risk-free tax shelters of multi-millionaires, but excessively increases the electric rates of already-struggling households and businesses.

The only reason for such a high feed-in tariff is to attract investors, build many projects, and then crow about the “success” of the SPEED program. How much the additional burden will be on already-struggling households and business is carefully finessed with glowing PR releases.

SPEED Projects greater than 2.2 MW

The following wind turbine plants in the “greater than 2.2 MW” category, with their (very optimistic) estimated annual energy production and capacity factors, as listed on the DPS website:

Granite Reliable ………..215,496 MWh, Coos County, NH. GMP contracted to buy 55% of the output for 20 years starting April 1, 2012.

Sheffield…………………..103,372 MWh………CF 0.295

Lowell……………………..182,909 MWh………CF 0.331

Georgia………………………27,000 MWh………CF 0.308; BED contracted to buy all of the output at 10 c/kWh for 2013 – 2038, 25 years.

Burlington Electric Department 2012 power supply:’s%20Power...

Georgia: BED contracted for 10 MW of 10 MW, and bought 76.2 MWh; partial year operation.

Sheffield: BED contracted for 16 MW of 40 MW, and bought 32,339 MWh; full year operation.

Sheffield 2012 production: 80,869 MWh, for a CF = 80,869 MWh/yr/(8,760 hr/yr x 40 MW) = 0.2308

Sheffield….. 40 MW……$120 million…………83,582 MWh………..CF 0.2385

Lowell*………63 MW……$170 million………..114,861 MWh……….CF 0.2081

Georgia…….10 MW……..$28 million………….25,397 MWh……….CF 0.2900; from BED

Total………..113 MW…….$318 million……….223,840 MWh

*Includes grid and substation upgrades of about $10 million, plus $10.5 million, 62-ton, synchronous-condenser system mandated by ISO-NE to minimize disruptions of the high voltage grid due to the variable wind energy.

NOTE: ACTUAL production, MWh, and CFs, are much less than the above optimistic values indicated on the DPS website.

Wind turbines on ridge lines in New England are a fiasco. No wind turbines can be constructed in the NEK, until at least $200 million of grid upgrades are made, which will not happen for about 10 years, per Vermont Rep. Klein. The 60 MW Seneca wind turbine project was cancelled because $86 million of grid upgrades were needed!!

1) Lowell Mountain, capacity 63 MW, capital cost about $170 million, 2013 production = 114,861 MWh; CF = 0.2081, which likely will increase after the ISO-NE mandated $10.5 million synchronous-condenser system comes on line in December 2013.

GMP estimated production 63 x 8760 x 0.2842 = 156,844 MWh/y, with standard rotor.

GMP estimated production 63 x 8760 x 0.3587 = 197,959 MWh/y, with 373 ft rotor.

GMP estimated production 63 x 8760 x 0.3380 = 186,570 MWh/y, per GMP website

Actual production in 2013: 63 x 8760 x 0.2081 = 114,861 MWh

Actual production in 2014: 63 x 8760 x 0.3244 = 179,030 MWh

NOTE: Green Mountain Power testified to the PSB, the CF would be 0.3587, “with the bigger rotor”. See URL                 

Already-struggling Vermont businesses and households in GMP’s service area, about 70% of Vermont ratepayers, will be on the hook for the extra Lowell costs for 20 or more years. GMP will not suffer, because it will roll all its extra costs into rate schedules, per PSB approvals.

GMP had to spend $20 million on grid improvements and synchronous-condenser system to be able to feed that much energy into the NEK grid. SENECA was to be located near Lowell and its grid improvements were estimated at $86 million. The project was cancelled. According to standard practice, the ISO-NE rule is THE DISTURBER PAYS.

2) Sheffield Mountain, capacity 40 MW, capital cost about $120 million, 2013 production = 83,582 MWh in 2013; CF = 0.2385; better than Lowell, but much less than the predicted 0.33 or better.

3) Georgia Mountain, capacity 10 MW, owned by Blittersdorf, et al., capital cost about $28 million, 2013 production = 25,397 MWh; CF = 0.29.

Summary of CFs


Lowell…………..63 MW……….N/A……..0.2081…….0.3244

Sheffield………..40 MW…….0.2308……0.2385……..0.2535

Searsburg………..6 MW……………………………………..0.2081

Georgia…………10 MW…………………….0.2900……..0.3700

It appears 2014 was a good wind year and CFs were up WRT 2012 and 2013.

NOTE: Above production data are from below website:                                                                                                  

Select 2014M: EIA-923, click on ZIP file. It takes some time to download.                                                                                                    

Scroll to spreadsheet rows 4913, 4682, 2400; Electricity Net Generation; columns CB to CK


Solar energy occurs during the ISO-NE defined “On-Peak” period of 7 AM – 11 PM. The cost of energy of any large SPEED solar facility up to 2.2 MW, connected via a substation, to Vermont’s high voltage grid, should be compared against the solar-energy, weighted-average, wholesale price, as follows:

1) Monthly wholesale rate, $/kWh x monthly solar energy production = monthly solar energy value, $/month. The annual solar energy wholesale value is $92.79, as produced by 1 kW (DC) of panels. Annual production = 1,324 kWh. See below table.

Open July 8, 2014, “Monthly Data by Load Zone” spreadsheet, go to bottom of page, click on VT tab, monthly wholesale prices, $/kWh, appear.

2) Divide $92.79/1,324 kWh = $0.0701/kWh. This is the solar-energy-weighted, annual-average, on-peak, wholesale price. The simple average of the monthly on-peak prices is $0.0814 c/kWh. See below table.

Both values are high, because of the 2014 winter gas shortage; more likely values would be about $0.068/kWh (solar adjusted) and $0.080 c/kWh (simple average), i.e., more in line with prior years.

However, PV solar is disruptive, variable, intermittent energy, that requires special coddling, balancing, expensive battery storage for accommodating it to the distribution grid, as Germany has found out in the Bavaria, etc. Therefore, it actually is worth LESS than about $0.068 cents/kWh.

NOTE: GMP is planning in Rutland, “the solar capital of Vermont”, expensive battery storage to minimize energy ripples on its distribution grid.

PV solar proponents often claim solar energy is much more valuable, because it is “there” during on-peak hours. It turns out those claims are bogus.

Current New England annual average grid prices are about 3.5 c/kWh, off-peak, and about 8 c/kWh, on peak (7 AM – 11 PM), for an annual average of about 5 c/kWh.















Total ….0.08140………1323.879………….92.79

NOTE: Based on DPS data, the Ferrisburgh, Vermont, 1,000 kW, south-facing, correctly angled, field-mounted, PV solar system has monthly averages of 4 years of production that show the production ratio of July/December = 161.905/42.601 = 3.80. The 4-yr average CF = 1,323,879 kWh/yr/(8,760 hr/yr x 1,000 kW) = 0.151.

Because inverters have lower efficiencies at PV solar outputs of less than 20% of inverter capacity (occurring mostly during winter), the monthly energy feed-in ratio is about 1/4 in New England. In Southern Germany, further away from the equator, it is about 1/6. See monthly output from 2 monitored solar systems in Munich.

NOTE: Based on DPS data, the South Burlington Vermont solar farm, 2,200 kW, 2-axis tracking units, field-mounted, has monthly averages of 4 years of production that show the monthly energy feed-in ratio of July/December = 4.936, worse than fixed-angle, and a 4-year average CF = 0.167, which is 0.167/0.151 = 10.6% better than fixed-angle, even though such trackers are claimed to be up to 45% better! In Vermont, the better performance of 2-axis, up to 21%, occurs mostly during May, June, July and August. Snow would readily slide off the panels at the steep winter angles. Such systems would be about 25% to 30% more costly and require greater O&M expenses, which will reduce any economic advantage.

NOTE: The solar system output is adversely affected by high module temperatures and beneficially affected by low module temperatures. See URL.


The 5 x 500 kW PV Solar Tax Shelter in Springfield, VT, estimated cost is  $8 million, or $3,200/kW.

The state will pay to the risk-free, tax shelters of in-state and out-of-state multi-millionaires, who typically own such systems 2,500 kW x 8,760 hr/yr x capacity factor 0.143 x 25.7 c/kWh = $804,847/yr for 25 years, for a total of $20,121,173; Yikes!!

According to Hallquist, the feed-in tariff should be at most 15.3 c/kWh, but the PSB has hired a consultant, who appears to live on another planet, and came up with 25.7 c/kWh; it was 27 c/kWh!!!

The PSB happily accepted that, to make at least the PV solar part of the SPEED program a “success”, now that the destructive experiment of wind turbines on ridgelines has come to a dead end, as it has proven to be an expensive fiasco.

Remember, the Springfield investment is only $8 million, but about 30% of it will be a gift from the federal government, with the difference likely borrowed at low rates, , because of low risk, and the whole project being written off in about 5 years to reduce federal taxes. Is that a lucrative gravy train or not?

GMP could have bought that energy for about 6.5 c/kWh, at least for the first few years, because grid prices likely will be steady during those years. After that, grid prices may rise at about 2 percent per year with inflation.

What happens to the cost difference? Oh, that gets charged to already-struggling households and businesses.

Vermont households already are “enjoying” the 4th highest household electric rates in the US, plus, are having a cost of living index 20% greater than the US average.

For Vermont, increased energy efficiency would be so much less costly and more effective than building out SPEED. It would actually REDUCE the energy costs of already-struggling households and businesses:

– Trying to make ends meet/hold their own, most of them with declining or stagnant real household incomes since about 2000,

– In a near-zero-growth Vermont economy,

– With a cost of living index 20% greater than the US COL,

– With a government plus quasi-government sector growing at a greater rate than the increasingly-hollowed-out private sector, and

– With the fourth highest electric rates in the US, right after Hawaii, Alaska, and Connecticut, partially due to having to subsidize and finance expensive, ineffective wind energy and solar energy SPEED programs that produce disruptive, variable, intermittent, i.e., junk energy, at 3-4 times NE grid prices. See URLs.



New England installed wind turbines at end 2013:  119 VT + 171 NH + 431 ME + 103 MA + 9 RI + 0 CT = 833 MW, at a cost of about $2.5 billion, including grid build-outs

During a winter peak period, per ISO-NE, RE was 5% of 24,294 MW demand = 1,214.7 MW, of which wind was 17%, or 206.5 MW.

Thus, at that time, the CAPACITY FACTOR for all of New England was 206.5/833 = 0.248, which is in accordance with the NE ANNUAL AVERAGE capacity factor of 0.25, as published by the US- DOE, which means it was an average windy day.


New England installed PV panels at end 2013: 36.13 VT + 8.22 NH + 8.12 ME + 361.55 MA + 10.9 RI + 73.75 CT = 498.7 MW ac, or 607.4 MW dc.

NOTE: ISO-NE measures MW in ac.

During the SAME winter peak period, per ISO-NE, grid-connected PV solar was 1% of RE = 12.147 MW ac, or 14.8 MW dc.

Thus, at that time, the CAPACITY FACTOR for all of New England was 14.8/607.4 = 0.024, which means that period was cloudy, and the panels were producing at 0.024/0.14 = 17% of the ANNUAL AVERAGE capacity factor of about 0.14

Variable, intermittent wind and solar energy are expensive feel-good contributors, “there” on a sporadic basis, cannot be relied on, unless utility-scale energy storage is invented and deployed, which will take many billions of dollars and decades, just in New England.


The PV panels were not designed for snowy climates. The reason they do not have electric heaters to melt snow and ice. If field-mounted, one can rake off the snow with a squeegee, but on roof-mounted systems, no one would be foolish enough to climb on a steep, snow-covered roof.

On average, NEW PV systems have loss factor of about 20%, due to various losses designed into the system; the maximum output of a 50 MW system is about 40 MW.

However, in the real world, solar panels are:

– Aging of about 0.5%/y,

– Dusty,

– Partially shaded by trees,

– All or partially snow-covered, etc.,

– Not correctly angled*

*As about 80% of the systems are roof-mounted, many roofs are not facing solar south and the panels are not correctly angled. All these factors reduce the 40 MW to about 32.5 MW.

In Germany, the THEORETICAL CF of NEW systems is about 0.115, the ACTUAL capacity factor of a real-world mix of systems is about 0.095, based on actual production records of the past 15 years, a loss of about 17.4 %. In Vermont, the numbers are 0.143 and 0.120, respectively, a loss of about 16.1%. In Germany:

– The national solar output is as low as 2 – 3% of installed capacity, MW, in winter.

– The national solar output is at most 65% of installed capacity, MW, in summer.

Similar numbers apply to Vermont. Some solar proponents like to use 0.14, but that is TOO optimistic.


Vermonters are the victims of a grand, fraudulent charade to promote heavily subsidized, expensive wind energy on ridgelines, primarily to schlep as much federal subsidies to Vermont as possible, mostly for the benefit of the well-connected, multi-millionaires with tax-shelters.

Reports were written about the abundance of wind on ridgelines, and it being a great renewable energy source for Vermont, and leading to energy independence, and creating jobs. No more reliance on those dirty fossil fuels and that dangerous Vermont Yankee.

The CEA report was written for Vermont utilities to guide them towards renewables. CEA based its analyses on CFs = 0.33, quoting “Vermont sources”. Page 23.

After the CEA report was issued, Blittersdorf, a self-proclaimed Vermont wind guru, owner of 10 MW Georgia Mountain, helped James Moore write the VPIRG “Repowering Vermont” report, which used wind turbine capacity factors of 0.33, quoting the CEA report, which quoted “Vermont sources”. Yikes!

And Vermont legislators were fed this garbage, wanted/pretended to believe it, as it provided a fig leaf for CYA purposes, and enacted laws accordingly, even though evidence of poor CFs of Northeast wind turbine plants, about 0.245, already existed in US and Maine government reports, and were known to the Legislature, DPS and PSB, because they were informed of their existence by several Vermont sources, including myself.


Below is an article, which details the impact on newborns when wind turbines are placed too close to people and animals. The article is food for thought/introspection for Shumlin, Klein and other wind turbine aficionados.

Wind turbines adversely impact the fetuses of pregnant women and other fauna species susceptible to low frequency vibrations from wind turbines, a.k.a. infrasound with frequencies less than 20 Hz. Infrasound cannot be heard, but is felt. Infrasound travels much longer distances than audible sounds that have higher frequencies.

The PSB, so-called “Protector of the Public Interest”, refuses to:

– Admit adverse health effects exist, despite numerous reports to the contrary

– Measure and regulate infrasound, despite numerous complaints from nearby people

– Regulate and enforce minimal setback requirements of about 2 km from a residence.

Excerpt from the article:

“Politicians, and wind industry shills who … deny the risks to health, are now liable to be successfully sued by wind farm victims. And so are governments, as they still refuse to measure infrasound emitted by modern wind turbines.”

In Denmark last month, 1,600 animals were born prematurely at a mink farm. Many had deformities, and most were dead on arrival. The lack of eyeballs was the most common malformation. Veterinarians ruled out food and viruses as possible causes. The only thing different at the farm since last year has been the installation of four large wind turbines at a distance of 328 meters, or about 1,000 ft.
The wind farm consists of four 3 MW turbines, VESTAS model V112, reaching out to 140 meters in height at the tip of the blades. When they became operational last fall, a first mishap was reported by the mink farmer at a parliamentary committee on wind farms in January this year.

NOTE: The 3 MW turbines are exactly the same as at LOWELL MOUNTAIN!!!

The Green Mountain Power, 63 MW Lowell Mountain wind turbine facility with (21) 3 MW Danish, Vestas V-112 wind turbines, 367.5-ft (112 m) rotor diameter, 275.6-ft (84 m) hub height, total height (275.6 + 367.5/2) = 459.3 ft, stretched along about 3.5 miles on 2,600 ft high ridge lines, has nothing to do with community-scale wind, everything with industrial, utility-scale wind. The housings, 13 ft x 13 ft x 47 ft (3.9 m x 3.9 m x 14 m), on top of the 280-ft towers, are much larger than a Greyhound bus.


Wind energy promoters have testified before the PSB that their ridgeline wind turbine plants will have CFs of about 0.33 or better. Actual production results in Maine, New York, indeed all of the Northeast, have shown their testimony as not valid.

New York State: Here are the actual capacity factors of New York State. They are not anywhere near project-owner claimed values of 0.33, or better, to get permits and subsidies from gullible/complicit government entities






US Regions: Here are the official regional 2012 CFs for NEW projects commissioned in 2010 and 2011: 

Central States………..0.370

Great Lakes……………0.280

West Coast…………….0.260 



See page 48 of URL.

Maine has a CF of 0.25

Wind Energy Production and Capacity Factors, by State

The below table lists the wind energy production and capacity factors for Vermont for the past 3 years. The data, FOR EACH STATE, are from the Energy Information Administration, EIA, a part of  the US DOE.

In 2013. Vermont had the fifth lowest CF, after Utah, Tennessee, Nevada, Arizona.


Capacity, MW………………..6…………….46……………109*

Production, MWh………….10,829……….93,041………210,639 (Lowell, Sheffield, Searsburg)


* Lowell, 63, Sheffield 40, Searsburg 6, for a total of 109 MW.  Georgia Mountain, 10 MW, is not reporting to the FERC, and its production, MWh, is excluded.


A Lesson for Vermont: It is clear from the German RE “leadership” example, Vermont’s 2011 CEP goal of 90% of ALL energy from RE by 2050 (not just electrical energy which is only about 1/3 of ALL energy), whereas a technical possibility, would not be economically tenable, even if other New England states had similar ambitions to handicap their economies, businesses and households.

Vermont’s cost of living index would become so high, many people would vote with their feet, after having been unable to make Montpelier mend its ways.

BTW, poor Vermont’s 90% goal is much more ambitious (starry-eyed, irrational?) than rich Germany’s goals. 

Photo Credit: Vermont and Renewables Costs/shutterstock




Willem Post's picture
Thank Willem for the Post!
Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.
More posts from this member
Spell checking: Press the CTRL or COMMAND key then click on the underlined misspelled word.
Rick Engebretson's picture
Rick Engebretson on Jan 28, 2014

The “EV” might be better defined; I presume it’s for a program “Energy Vermont.” Otherwise, it sounds like Minnesota government to me.

I was rather shocked how Minnesota government perceived the current propane heating shortage and cold weather. I knew drying corn used a lot of propane, but I didn’t realize how much propane poultry producers now use until I heard the state’s concern.

It seems like consumption can grow indefinitely, no matter what individuals do. Biomass harvesting crews can wipe out a forest in days, and they will tell you “it will grow back.” Of course, it will not. How do they burn green, wet wood chips?

Consumption seems the only agenda of those that stole the “environmentalist” label. I don’t know what to do. I’m glad you tried make suggestions.

Robert Bernal's picture
Robert Bernal on Feb 6, 2014

Whatever the numbers are, wind is getting cheaper and is the best clean energy except for closed cycle molten fuels nuclear which nobody will “allow”. So, go with the wind!

Bas Gresnigt's picture
Bas Gresnigt on May 29, 2014

Looking at unbelievable high FiT’s you state for Vermont.

If those are true, I think the involved politicians & managers should pay a visit to Germany; visiting Fraunhofer ISE, some solar & wind installers, UBA, BDEW, etc.
As then they can learn a lot about how to do it right.

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »