This group brings together the best thinkers on energy and climate. Join us for smart, insightful posts and conversations about where the energy industry is and where it is going.


The First Commercial Cellulosic Plant is NOT About to Open


House Ag Committee Holds Hearings on Energy

On May 18, 2012 the House Committee on Agriculture held hearings on retaining Energy Title funding in the 2012 Farm Bill. Written testimonies and the video of the hearing are available at Formulation of the 2012 Farm Bill: Energy and Forestry Programs.

The hearings were held as Congress prepares to write the next Farm Bill. The purpose of this particular hearing was to discuss the renewable energy development provisions of the current Farm Bill, whether particular programs are achieving the desired results, and whether specific programs should be continued.

There were some comments during the hearing that warrant further analysis.

During his initial testimony, Jim Greenwood, who is President and CEO of Biotechnology Industry Organization (BIO) made the following comment (15:55 mark of the testimony): “INEOS Bio and its joint venture partner New Planet Energy are preparing to open the Indian River County BioEnergy Center, near Vero Beach, Florida within the next few weeks. The biorefinery is a major landmark for this country. It’s the first commercial cellulosic refinery.”

This claim has been repeated many times over the past decade — that one company or another was going to be the first to open a commercial cellulosic ethanol plant — but it is inaccurate.

Below is a short history of cellulosic ethanol production, which I detailed in The First Commercial Cellulosic Ethanol Plant in the U.S. All of this can be confirmed by visiting the U.S. Department of Energy – Energy Efficiency and Renewable Energy (EERE) link that I provide in the references.

A Brief History of Cellulosic Ethanol Production

Almost 200 years ago, in 1819, French chemist Henri Braconnot first discovered how to unlock the sugars from cellulose by treating biomass with sulfuric acid (Braconnot 1819). The technique was later used by the Germans who were the first to commercialize cellulosic ethanol from wood in 1898 (EERE 2009).

So the world’s first commercialization of cellulosic ethanol took place 114 years ago. First commercialization in the U.S. took place in 1910 — 102 years ago. The Standard Alcohol Company built a cellulosic ethanol plant in Georgetown, South Carolina to process waste wood from a lumber mill (PDA 1910). Standard Alcohol later built a second plant in Fullteron, Louisiana. Each plant produced 5,000 to 7,000 gallons of cellulosic ethanol per day from wood waste, and both were in production for several years (Sherrard 1945). So actual production 100 years ago was up to about 2.5 million gallons of cellulosic ethanol per year. Planned production at the INEOS facility is 8 million gallons per year.

In the decades after Standard Alcohol closed their plants, there were attempts at commercialization in the 1940′s and 1950′s, the 1970′s, and then of course over the past decade. Commercialization attempts have been global, and many different processes have been attempted. Countries attempting to commercialize cellulosic ethanol production include the U.S., Germany, Japan, and Russia.

Why does that matter? It should be obvious. Paraphrasing George Santayana’s famous quote: “Those who cannot remember the past are condemned to repeat it.” If people don’t realize that we have already commercialized cellulosic ethanol only to see it ultimately fail — and numerous people have claimed that one effort or another will be the nation’s first commercial cellulosic ethanol facility — then they obviously don’t know why those efforts failed. Thus, they will make many of the same mistakes.

Building a Plant is Not the Issue

There was an interesting question by Republican Representative Glenn Thompson of Pennsylvania (2:12:26 mark of the testimony): “Obviously the initial goal of the Energy Title in the 2008 Farm Bill was to spur the development of commercially viable cellulosic ethanol and advanced biofuels. However I am not sure that a single gallon of commercial cellulosic ethanol has been blended into the fuel supply. So it’s a two-part question for the panel. What challenges need to be addressed in order to address that issue and does the current Energy Title provide the tools to move toward the advancement of commercially viable cellulosic ethanol.”

The first attempt at an answer was by Jim Greenwood. He first mentioned that the recession slowed things down, and then he referred back to his opening statement on Ineos. He said that the structure is completed, and that “they are going to be producing cellulosic ethanol literally within the next couple or three weeks. So we have demonstrated now that the science is there, I think we have demonstrated with the construction of this plant that you can build a commercial facility, and now being able to demonstrate that we can move those fuels into the fuel stream for motorized vehicles is the final step to prove the whole concept.”

Two comments on that statement. First, start-up issues are assured. Once they attempt to start up, it will be a while before they are actually producing commercial cellulosic ethanol. They won’t do that right from the start. Second, I don’t think anyone ever doubted that you can build a commercial facility. Range Fuels built a commercial facility. The challenge is actually operating that facility to produce fuel that is to the right specification and economically priced.

The Problem of Scale

But then Jerry Taylor, who is the co-founder of MFA Oil Biomass provided a follow-up answer: “It takes 1,000 acres even at 12 tons an acre that we produce to produce 1 million gallons of cellulosic ethanol based on the known conversion rates today.”

Taking his biomass yield assumptions of 12 tons an acre at face value (I doubt you can consistently get 12 dry tons per acre at large scale; commercial hay production is only around half that), we can do an interesting calculation. One million gallons of cellulosic ethanol has the same energy content as half a million gallons of crude oil. (Ethanol contains 2/3rds the energy of gasoline, but a barrel of crude also produces diesel, jet fuel, and fuel oil). U.S. oil production is presently 6.1 million barrels per day. That is 256 million gallons per day, 10.7 million gallons per hour, or 1 million gallons every 5.6 minutes.

Therefore, taking his yield assumptions at face value, 1,000 acres of land planted in Miscanthus giganteus over the course of a year could produce the energy equivalent of under 3 minutes of U.S. oil production. Of course U.S. oil production does not come close to meeting our needs, so to put it in terms of total U.S. oil demand of 18.7 million bpd, 1,000 acres of Miscanthus would cover 55 seconds of U.S. oil consumption. Since that doesn’t take into account the petroleum that will be required to produce the cellulosic ethanol (e.g., running trucks and tractors), the net number would be even lower.

That really puts it into perspective relative to the oil we consume. I have stated previously that I don’t believe cellulosic ethanol will ever be more than a niche fuel. I certainly do not believe we will see it scale up to billions of gallons of annual production. I believe the potential niches will utilize waste biomass and cheap energy inputs to produce fuel, but I don’t believe purpose grown biomass can be utilized to make competitively priced cellulosic ethanol (although I do believe it will be used for other energy purposes).


My previous prediction remains in place: Cellulosic ethanol as a scalable solution to our energy problems will never materialize. Companies will continue to attempt it on a small scale (with taxpayer help), but they will ultimately all end up where Iogen has ended up.

For those who don’t know, Iogen has produced cellulosic ethanol in Canada at a small scale since 2004. In 2011, they produced 98,000 gallons — 6.4 barrels per day. They probably understand the economics of cellulosic ethanol better than anyone in the business. They have announced many times their intention of building a large facility, but they have never done so. And they recently cancelled plans to build a larger facility. They know that despite all of the available subsidies, the economics of cellulosic ethanol are still poor.


Braconnot, H. Annalen der Physik. (1819) 63, 348.

EERE, U.S. DOE Energy Efficiency and Renewable Energy. (2009). Biomass Program. Retrieved May 26, 2012 from

PDA, Pennsylvania Department of Agriculture. (1910). 16th Annual Report.

Sherrard, E.C.; Kressman, F.W. “Review of Processes in the United States Prior to World War II.” Industrial and Engineering Chemistry, Vol 37, No. 1, 1945, pp 5-8.

Image Credit: Robert Kyllo/Shutterstock

Robert Rapier's picture

Thank Robert for the Post!

Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.


Spell checking: Press the CTRL or COMMAND key then click on the underlined misspelled word.
Rick Engebretson's picture
Rick Engebretson on May 30, 2012

Simply ask, “Why is this being looked at by the Agriculture community?” Because they are PRODUCING FOOD!

Breaking down cellulose to glucose is a different food production process than breaking down starch to glucose. (And different from producing paper or rayon.) Then using a food production fermentation process with important amino acids, nucleic acids added to enable the yeast to grow FOOD GRADE nutrients adds cost. and certainly consumes energy for yeast metabolism.

Yes, the FOOD PRODUCTION fermentation process creates waste (ethanol). So do dairy cows, and every FOOD PRODUCTION process. Apples and Oranges?

I’ve pushed “solar biofuels” so now a company “SundropFuels” shows up. It actually arose from efforts to eliminate landfill waste decades ago.

So keep pumping your petro.

Robert Rapier's picture
Robert Rapier on May 30, 2012

I’ve pushed “solar biofuels” so now a company “SundropFuels” shows up. It actually arose from efforts to eliminate landfill waste decades ago.


I actually visited their headquarters in Colorado around 2008. They were just starting to emerge from stealth operations at that time.


Rick Engebretson's picture
Rick Engebretson on May 31, 2012

I’m delighted to see their formal scientific efforts to advance this. My primitive advocacy is fashionable now. Many people now watch their wood fires burn and see “photochemistry” at work. The very nature of fire and waste gasification are again given more formal study. Combustion engineering once used the term “refractory” for where coal burned (maybe it still does). Solar was an obvious add-on. I’m glad SundropFuels web site conveyed success and opportunity.

My biggest criticism of the oil industry is that they under-value their product as a common fuel to be quickly consumed. Those resources should not be carelessly exploited. In this regard, I’m also delighted to see the auto industry aggressively innovating.

Who knows what will happen? But I do know a lot of good people are doing a lot of good things. Too many people, eating too much, using too much energy, can be interpreted in too many ways.

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »