This group brings together the best thinkers on energy and climate. Join us for smart, insightful posts and conversations about where the energy industry is and where it is going.


The Consequences of a Blue Arctic

Lou Grinzo's picture
Lou Grinzo 3442

Lou Grinzo is a writer and researcher residing in Rochester, NY. He blogs at The Cost of Energy (

  • Member since 2018
  • 498 items added with 91,893 views
  • Apr 13, 2013

We haven’t had a good algorasm here in a while, so let’s break out our calculators and do some plug-and-chug math regarding a critical topic: the consequences of a Blue Arctic.

I define “Blue Arctic” as the Arctic Ocean being largely ice free for at least a few days. I say “largely ice free” because even once Blue Arctic events become regular features of late Northern summers there will certainly still be considerable ice around the northern or northwestern coast of Greenland, for example. I’m sure scientists will come up with some metric for declaring the Arctic to be “virtually ice free”, such as total sea ice extent or area below a magic number, or perhaps everything north of a certain latitude being open water. The point is, it’s going to happen and we’ll know it when we see it.[1]

Right now, we’re on a trend of losing roughly 300 billion tons of ice per year from the Arctic ice cap, as seen in the PIOMAS graph we all know, love, and lose sleep over. Once we reach the point of regular Blue Arctic events, we won’t be able to lose that much ice, net, in a given year; unless you make the wildly implausible assumption that the Arctic volume will suddenly begin to rebound by 300 billion tons/year every winter, even as it experiences much greater levels of warming due to albedo flip, or the summer melt is suddenly much decreased, the rate of yearly ice volume loss simply has to slow down. For the sake of this calculation, let’s assume that the Arctic in a given year has a net ice loss of “only” 200 billion tons. Ignoring the albedo flip issue for the moment and all the additional heat that will be absorbed by open ocean instead of being reflected back into space by white snow and ice, how much extra heat are we talking about being absorbed by the ocean simply because we’re not melting ice the full 300 billion tons of ice?

Melting 200 billion tons means that we’re not melting 100 billion tons. That heat has to go somewhere, and the open ocean will surely get the vast majority of it, as over 90% of global warming currently winds up in the oceans.


100 billion tons of ice is 1.0 x 1011 tons, which is

Result 1: 1.0 x 1017 grams of ice

The energy needed to melt ice, that is, to convert it from ice at 0°C to water at 0°C, or its heat of fusion, is 334 Joules per gram of water.

Therefore, the amount of heat that would have gone into melting that 100 billion tons of ice is:

Result 2: 3.34 x 1019 Joules

(Note that I’m ignoring the heat that would have been absorbed by raising ice from below 0°C to 0°C, as well as the heat to warm the resulting water above 0°C.)

If you used all that newly-available heat to warm liquid water, you can find the amount of water you could raise by 1°C by dividing by the specific heat of water, 4.18 Joule / gram ° C, which gives us:

Result 3: 8.0 x 1018 grams of water

That’s a lot of water. The amount of water in Lake Ontario, for example, is about 1,640 km3, or the same number of billions of tons. Converting that to grams gives us:

Result 4: 1.64 x 1018 grams

Dumping all that heat from our non-melting of Arctic ice into Lake Ontario would therefore raise the temperature of the entire lake by (Result 3) divided by (Result 4), or

4.87°C, roughly 8.8°F

Once we transition into this new state, where we experience yearly Blue Arctic events, we would see additional heat accumulation every year, with the amount starting smaller than I’ve calculated above but rising as the amount of ice in the Arctic continues to decline, allowing less yearly net melt out each year.

Speaking as someone who lives very close to Lake Ontario, up here on the “Fourth Coast” of the US, as some people like to refer to it, and has driven around it a few times, I can tell you with utmost certainty that this result is terrifying.

And let me stress again that this calculation does not include albedo flip — all that additional open ocean every summer on top of the world will lead to much more heat absorbed by the environment.[2]

It seems we’re just beginning to appreciate how rapidly the environment can flip. As I’ve pointed out several times, if you simply look at maps of the Arctic and Antarctic regions and think in terms of ice, permafrost, and hydrate deposits, you couldn’t ask for two more different geographies and what they imply in a warming climate. Antarctica, with its central land mass and very little surrounding land, is conducive to stability: Slower ice dynamics because so much of the ice is on land, no major albedo flip component, and little to no permafrost and hydrates in the area. The Arctic is just the opposite: A huge area of sea ice that can melt quickly and then create the albedo flip feedback, surrounded by massive permafrost and hydrate deposits primed to accelerate the whole process.

In fact, I don’t see how one can escape the conclusion that the saw-tooth pattern that arises in temperature reconstructions (note the rapid rise of the black line, most obvious in the sections highlighted in yellow):



(Source: NOAA Paleoclimatology Program)

is a direct function of geography. During warm periods, biological carbon builds up in the northern latitudes, dropping atmospheric CO2 levels and slowly cooling the environment. Eventually, those areas freeze into permafrost, locking away huge stores of carbon (currently about 1.7 trillion tons), and more hydrates form due to cooler ocean temperatures, until something comes along and jostles the system, whether that’s an orbital perturbation or human beings burning every bit of fossil fuel we can get our hands on. That little bit of warming is the first domino to fall; it then pushes albedo flip and permafrost and hydrates, resulting in a relatively quick liberation of at least some of that locked-away carbon, and the result is a temperature spike.

Without realizing it, we’ve been living on a razor’s edge since the beginning of the Holocene, and we’re ending it very abruptly with our emissions.

For all the “it’s worse/happening quicker than we thought” discoveries of the last decade, I fear that we’re set up for one of the worst epiphanies possible when Arctic change builds some momentum and starts liberating even a tiny portion of the 1.7 trillion tons of carbon in the permafrost. There’s endless discussion about climate sensitivity — how much warming you get, pre-feedback, from a doubling of atmospheric CO2 — and I’m increasingly convinced that this is a misguided view of our precarious situation. The question is not how big is that first domino, but how much larger are the next few it sets in motion once disturbed.

[1] At least those of us not at the mercy of irrational financial or ideological leanings who will somehow refuse to see it at all.

[2] Anyone here have a handle on how to convert sea ice area converted from ice to open ocean to heat absorbed? I’ve seen a number quoted that the ice loss already realized is equivalent to a forcing of 0.3 W/square meter over the entire Earth’s surface, but I’m not comfortable trying to extrapolate that to new ice loss and the Blue Arctic events addressed in this post.

Lou Grinzo's picture
Thank Lou for the Post!
Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.
More posts from this member
Spell checking: Press the CTRL or COMMAND key then click on the underlined misspelled word.
Tim Havel's picture
Tim Havel on Apr 15, 2013

There was a sound like that of the gentle closing of a portal as big as the sky, the great door of heaven being closed softly. It was a grand AH-WHOOM. I opened my eyes – and all the sea was ice-nine. The moist green earth was a blue-white pearl. The sky darkened. … [T]he sun became a sickly yellow ball, tiny and cruel. The sky was filled with worms. The worms were tornadoes.

from Cat’s Cradle, by Kurt Vonnegut

Get Published - Build a Following

The Energy Central Power Industry Network is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »