This special interest group is for professionals to connect and discuss all types of carbon-free power alternatives, including nuclear, renewable, tidal and more.


Net-Zero Cooling to Power, The Future of Energy Efficiency

image credit: Active Cooler, ElectraTherm Engineering
Daniel Ward's picture
Marketing Coordinator, ElectraTherm

As a recent graduate from the University of Georgia, I'm very eager to help advance the clean energy movement. In my current position with ElectraTherm, a waste heat recovery specialist using the...

  • Member since 2021
  • 4 items added with 1,432 views
  • Apr 12, 2021

Rankine Cycle and Organic Rankine Cycle

Waste heat is a vast, underutilized, and sustainable source of energy that is often overlooked due to the costs involved with capturing and converting that heat into electricity. Rankine cycle (RC) systems have been used for decades to generate clean electricity from heat, however these systems are restricted to sources of high-temperature heat such as found at large power plants, industrial complexes, and large geothermal sources.

With the development of Organic Rankine Cycle (ORC) technology, a refinement of the Rankine Cycle, there is now the ability to capture and convert lower-temperature heat into electricity. The main difference between the two cycles is that RC’s use steam to produce power while ORC’s convert an organic working fluid, which has a boiling point less than that of water, into vapor to produce power. This differentiating factor makes for much smaller systems, allowing lower temperature heat sources – such as engine waste heat and process heat – be used to generate emission-free electricity.


Screw Expander vs. Turbine Technologies

However, not all ORC systems are created equal. There are those that use a turbine as their power generator whilst others use a screw expander. There are advantages and disadvantages of each system which will be briefly discussed here, however, it is important to note that net-zero cooling to power technology is a solution predominantly utilizing screw expander technology.

Turbine systems are generally suitable for stable heat streams with constant load. They offer a slight increase in efficiency over expanders due to less friction loss and extremely high operating speeds. However, with blades spinning at such high speeds, turbine systems are at increased risk of being damaged by liquid impingement, or the formation of liquid drops in the pressurized vapor. As a result, this cycle requires superheated vapor throughout the process to avoid condensation, which may occur due to a drop in pressure. If this occurs the blades could be badly damaged and must be replaced. This creates an issue with smaller, more variable heat sources. If the turbine cannot maintain superheat inlet parameters, the system will have to shut down or go on bypass to avoid damage.

As indicated above, while a turbine system may be ideal for higher temperature heat sources with a consistent flow, they tend to be unsuitable for many waste heat recovery opportunities that screw expander systems are able to capitalize on due to their superior transient operation capabilities.

Screw expanders are more compact, cost-efficient, and robust compared to turbine systems. Their design results in lower operating speeds, quieter operation, and less maintenance. Since the system is operating at much lower speeds, it experiences less pressure on the pump leading to reduced maintenance costs and easier operation. The robustness of an expander allows it to tolerate “wet” dual-phase flow caused by incomplete phase change of the working fluid. This makes screw expanders better equipped for transient operation, allowing the system to reliably generate power from heat sources with fluctuations in thermal input, both temperature, and flow. Additionally, expander systems have a far superior turndown ratio, with leading systems able to operate everywhere from 5 kW up to 125 kW.

ORC systems incorporating a twin-screw expander are not only more affordable and reliable but are more suited for low temperature waste heat recovery where heat availability is variable and are particularly well suited for net-zero cooling applications.


The Potential of Waste Heat

Power generation and industrial processes, amongst other sectors, lose a great deal of their applied energy as heat – which in many cases can be in excess of 50%. This lost energy is commonly known as waste heat. For internal combustion engines, waste heat is rejected through the engine jacket water system and exhaust gases. With that said, there are many different sectors with different forms of waste heat. Providing the waste heat can be harvested and converted into a fluid heat source through the use of heat exchangers, an ORC system can be integrated to recycle that heat into clean, green electricity.

The heat produced as a byproduct in these processes can either be friend or foe, depending on how one approaches the situation. Take combustion engines (or gensets) for example. Engines see extensive use around the world, from remote power generation, marine propulsion, and anaerobic digestion to LFG production and gas compression. Regardless of their use, engines generate substantial amounts of heat. This heat is a waste of thermal energy and steals valuable power from the engine for cooling. Waste heat and the parasitic cooling load amount to a large portion of the energy lost in power generation processes.

Modern ORC systems can convert heat sources as low as 70°C into clean power. These new systems have undergone many years of development to ensure they are more cost-efficient, robust, and reliable than ORC systems of the past. Today’s sophisticated, yet simple, technology has become a reoccurring area of interest when it comes to energy efficiency and sustainability. The potential for heat recovery from low temperature sources opens opportunities for businesses both small and large to take advantage of their waste heat to achieve greater energy efficiencies and improve their bottom line while taking steps to better the planet.


What is “Cooling To Power”?

Cooling to power refers to an ORC units’ ability to act as a combined cooling and power generator, providing a net-zero cooling solution that generates power as a secondary function when the cooling load is not at peak demand. Cooling to power is an effective means of increasing energy efficiency due to ORC systems consuming the waste heat as fuel, which significantly reduces the cooling load (70-100%). This means in addition to generating emission-free power, the parasitic cooling load also is reduced or even eliminated, further reducing costs and increasing efficiency.

As the heat load is reduced, this allows cooling to power systems to prioritize the generation of clean electricity. When the cooling load increases the system will automatically adjust power output to fulfill engine cooling requirements, maintaining engine cooling independent of the generator’s operating status. In rare occurrences, during peak demand, the ORC expander is bypassed completely and the system will prioritize full-load cooling. This is the only time the system will consume power that is not its own.

Essentially, cooling to power technology provides a highly efficient, self-powered radiator that pays for itself through the generation of power. While traditional cooling systems (radiators / cooling towers) consume power to provide cooling, cooling to power systems consume heat to provide cooling as well as power. This provides a cooling solution with a positive net present value (NPV) opposed to a negative NPV.


Quick Numbers

If electricity rates in an area are $0.10/kWh and a radiator experiences 8,000 hours of operation annually while consuming 8 kW – that amounts to 64 MWh annually valued at $6,400. If the radiator were replaced with a cooling to power system, such as ElectraTherm’s Active Cooler, and produced an average of 40 kW while displacing the previous demand of 8 kW – that is 48 kW of newly available electricity, or 384 MWh annually valued at $38,400. Over a 20-year period, all variables consistent, the Active Cooler would boost revenue by $768,000 while a standard radiator would cost $128,000.

Previous case studies that have demonstrated the ability of cooling to power technology have seen efficiency increases in the 5% range – a small number that makes a big impact on businesses’ bottom line and the environment.


Economic and Environmental Implications

Increasing energy efficiency is the single easiest step in pursuing a carbon-neutral future. Using an existing resource - heat - to provide power and cooling reduces fossil fuel consumption and reliance on the grid. ORC power generation is a sustainable technology that reduces the amount of energy consumed (fuel) and energy wasted (heat). Energy efficiency will always play a role in combatting climate change because no matter the process, the more efficient it is, the less impact it has on the planet.

With the reliability and cost-effectiveness of modern systems, waste heat recovery solutions such as cooling to power are both profitable and practical. With the world eyeing ways to shift toward clean energy and with the help of incentives promoting sustainability like the Consolidated Appropriations Act 2021, cooling to power is primed to be a disruptive technology in the energy efficiency and commercial cooling market – effectively changing the way corporations see and use waste heat.

Matt Chester's picture
Matt Chester on Apr 12, 2021

What are the biggest challenges to getting real results from cooling to power? Is it a lack of scale? Are their capital costs that can be challenging for customers to buy into?

Daniel Ward's picture
Daniel Ward on Apr 13, 2021

Hi Matt thanks for the question. The biggest challenges are insufficient high temperatures and a lack of thermal energy. If operators overestimate their available heat then the kilowatt output will be lower than calculated originally. However, power generation is not the only benefit of cooling to power technology. Net-zero cooling and the ability to serve as a micro-grid providing baseload power in remote areas are also attractive features of the system. Using the technology solely for the generation of power, you will get a price per kilowatt more expensive than other (non-renewable) power generation solutions on the market. However, these other systems will have high operating expenses due to the burning of fuel versus a cooling to power system which provides electricity as as secondary function through a process that calls for no additional fuel consumption or emissions.

That said, cooling to power technology has the ability to eliminate energy inefficiencies associated with the cooling process if sized properly for the heat source. The capital cost is offset by the system serving as a radiator alternative that generates electricity during non-peak cooling demand. Customers who see the greatest return on investment are those in areas with favorable ambient conditions and who can benefit from having a newly available source of electricity. Cooling to power also curbs energy demand - thus emissions - and for projects in the U.S. can qualify for a 26% tax investment credit through the Consolidated Appropriations Act 2021.

Even with the offset capital costs and numerous benefits, customers are still wary due to horror stories of ORCs in the past and unfamiliarity with this new technology. Waste heat recovery has long fought to be recognized as a sustainable means of producing energy, boosting efficiency, and curbing emissions. With the passing of the Consolidated Appropriations Act 2021, heat to power (the basis of cooling to power) has finally been recognized in the United States and has been incentivized similarly to how wind and solar projects were in their beginning phases. The waste heat recovery industry is hoping that as orders come in and the technology is tested and proven that customers will begin to see this technology in a different light and realize the potential it has in so many processes around the world.

Matt Chester's picture
Matt Chester on Apr 13, 2021

Waste heat recovery has long fought to be recognized as a sustainable means of producing energy, boosting efficiency, and curbing emissions. With the passing of the Consolidated Appropriations Act 2021, heat to power (the basis of cooling to power) has finally been recognized in the United States and has been incentivized similarly to how wind and solar projects were in their beginning phases. 

The recognition you describe is, unfortunately, a huge crux to wait on, so it's good to hear there's progress. What was the political resistance to recognizing its potential when EE, demand response, and other tools have long been accepted into the fold? 

Daniel Ward's picture
Daniel Ward on Apr 19, 2021

Unfortunately, until recently, ORC systems were not very cost effective and frequently experienced system reliability issues that led to widespread dissatisfaction within the ORC market. Since then the industry as a whole has worked diligently to produce more cost-effective solutions more dependable than before. In recent years the market has seen an uptick in interest, however we are a ways to go until full recognition and adaption. It is our hope that incentives, reduced capital costs, and increased efficiencies will speed along this process.

Daniel Ward's picture
Thank Daniel for the Post!
Energy Central contributors share their experience and insights for the benefit of other Members (like you). Please show them your appreciation by leaving a comment, 'liking' this post, or following this Member.
More posts from this member

Get Published - Build a Following

The Energy Central Power Industry Network® is based on one core idea - power industry professionals helping each other and advancing the industry by sharing and learning from each other.

If you have an experience or insight to share or have learned something from a conference or seminar, your peers and colleagues on Energy Central want to hear about it. It's also easy to share a link to an article you've liked or an industry resource that you think would be helpful.

                 Learn more about posting on Energy Central »